Impact-Site-Verification: dbe48ff9-4514-40fe-8cc0-70131430799e

## Search This Blog

Solve the system of equations with Gauss Jordan elimination method in MATLAB. You do not need any MATLAB programing knowledge(or any programing language ) to program it, as I have provided the MATLAB code.
How to use MATLAB to generate result is discussed in the tutorial in most easy manner.
You can solve any size and type  (No. of array + No. of equations) of system of equation with the program, as it is made for general purpose.

%Code

clear all;

clc;

format rat

disp('        Solving system of equations using')

disp('               Gauss Jorden Method')

disp('          In this method we convert the ')

disp('     Augmented matrix in reduced echenlon form')

disp('')

A=input('Enter the augmented matrix\n = ');

r=length(A(:,1));

c=length(A(1,:));

disp('Farward phase')

for i=1:r

f=0;

l=i;

if A(i,i) ~= 1

for m=i+1:r

if A(m,i) == 1

B=A(i,:);

A(i,:)=A(m,:);

fprintf ('Swaping R%.f with R%.f.\n',m,i)

A(m,:)=B;

disp(A)

break;

end

end

end

if A(i,i)== 0

for k=i+1:r

if A(k,i)~= 0

B=A(i,:);

A(i,:)=A(k,:);

fprintf ('Swaping R%.f with R%.f.\n',k,i)

A(k,:)= B;

diso(A);

d=A(i,i);

f=1;

break;

end

end

if f == 0

for l=i+1:c-1

if A(i,l) ~= 0

d=A(i,l);

f=1;

break;

end

end

end

else

d=A(i,i);

f=1;

end

if f ~= 0

if d~=1

fprintf('R%.f / (%s) \n',i,rats(d))

A(i,:)=A(i,:)/d ;

disp(A);

end

for j=i+1:r

if A(j,l)== 0

continue;

end

fprintf('R%.f-  (%s)*R%.f \n',j,rats(A(j,l)),i)

A(j,:)=A(j,:) - A(j,l)*A(i,:);

disp(A)

end

end

end

disp('')

disp('Reverse phase')

fg=0;

for i=r:-1:1

f=0;

l=i;

if A(i,i)== 0

for l=i+1:c-1

if A(i,l) ~= 0

d=A(i,l);

f=1;

break;

end

end

else

d=A(i,i);

f=1;

end

if f ~= 0

for j=i-1:-1:1

if A(j,i)== 0

continue;

end

fprintf('R%.f-  (%s)*R%.f \n',j,rats(A(j,i)),i)

A(j,:)=A(j,:) - A(j,l)*A(i,:) ;

disp(A);

fg=1;

end

end

if ( (f==0 && A(i,c)) == 1 || fg==0 && i==1)

disp('No solution')

break;

end

end