Impact-Site-Verification: dbe48ff9-4514-40fe-8cc0-70131430799e

Search This Blog

MATLAB Program for Taylor's Method of Order 2


% Taylor's method of order 2 
 % Example 1:  Approximate the solution to the initial-value problem
 % dy/dt=e^t ; 0<=t<=2 ; y(0)=1;

 % Example 2:  Approximate the solution to the initial-value problem
 % dy/dt=y-t^2+1 ; 0<=t<=2 ; y(0)=0.5;

  %f = @(t,y) (0*y+exp(t));
  %fprime = @(t,y) (0*y+exp(t));   % f=e^t, f'=e^t
 
  f = @(t,y) (y-t^2+1);   
  fprime=@(t,y) (y-t^2+1-2*t);    % y'=f=y-t^2+1, f'=y'-2t+0 =y-t^2+1-2t
 a = input('Enter left end ponit, a:  ');
 b = input('Enter right end point, b:  ');
 n = input('Enter no. of subintervals, n: ');               
 alpha = input('Enter the initial condition, alpha:  ');

 h = (b-a)/n;                                               
 t=[a zeros(1,n)];
 w=[alpha zeros(1,n)];


 for i = 1:n+1
 t(i+1)=t(i)+h;
 wprime=f(t(i),w(i))+(h/2)*fprime(t(i),w(i));
 w(i+1)=w(i)+h*wprime;
 fprintf('%5.4f  %11.8f\n', t(i), w(i));
 plot(t(i),w(i),'r*'); grid on;
 xlabel('t values'); ylabel('w values');
 hold on;
 end

OUTPUT: 

>> TaylorMethodofOrder2
Enter left end ponit, a:  0
Enter right end point, b:  2
Enter no. of subintervals, n: 10
Enter the initial condition, alpha:  1
0.0000   1.00000000
0.2000   1.44000000
0.4000   1.96000000
0.6000   2.56000000
0.8000   3.24000000
1.0000   4.00000000
1.2000   4.84000000
1.4000   5.76000000
1.6000   6.76000000
1.8000   7.84000000
2.0000   9.00000000

>> 

No comments

Popular Posts