Impact-Site-Verification: dbe48ff9-4514-40fe-8cc0-70131430799e

Search This Blog

Romberg integration algorithm using MATLAB






MATLAB PROGRAM:


% Romberg integration algorithm
 % Find the integral of y=sin(x) from 0 to pi.

 f = @(x) sin(x);
 a = input('Enter lower limit, a:  ');
 b = input('Enter upper limit, b:  ');
 n = input('Enter no. of subintervals, n:  ');
 
 h = b-a;
 r = zeros(2,n+1);
 r(1,1) = (f(a)+f(b))/2*h;
 fprintf('\nRomberg integration table:\n');
 fprintf('\n %11.8f\n\n', r(1,1));

 for i = 2:n
    sum = 0;
    for k = 1:2^(i-2)
       sum = sum+f(a+(k-0.5)*h);
    end
    r(2,1) = (r(1,1)+h*sum)/2;
  
    for j = 2:i
       l = 2^(2*(j-1));
       r(2,j) = r(2,j-1)+(r(2,j-1)-r(1,j-1))/(l-1);
    end

    for k = 1:i
       fprintf(' %11.8f',r(2,k));
    end
 
    fprintf('\n\n');
    h = h/2;
    for j = 1:i
       r(1,j) = r(2,j);
    end
 end


OutPut:

Enter lower limit, a:  0

Enter upper limit, b:  pi
Enter no. of subintervals, n:  6

Romberg integration table:

  0.00000000

  1.57079633  2.09439510

  1.89611890  2.00455975  1.99857073

  1.97423160  2.00026917  1.99998313  2.00000555

  1.99357034  2.00001659  1.99999975  2.00000002  1.99999999

  1.99839336  2.00000103  2.00000000  2.00000000  2.00000000  2.00000000


>> 

4 comments:

  1. pretty interesting but what's the function of line 13 in the code?

    ReplyDelete
  2. This winter, buy this Star Wars Andor Diego Luna Poncho and keep your body warm while also being stylish. This poncho is the best in terms of design and color; get it now at the best price.

    ReplyDelete