What Is Deep Learning Toolbox?

Deep Learning Toolbox™ (formerly Neural Network Toolbox™) provides a framework for designing and implementing deep neural networks with algorithms, pretrained models, and apps. You can use convolutional neural networks (ConvNets, CNNs) and long short-term memory (LSTM) networks to perform classification and regression on image, time-series, and text data. You can build advanced network architectures such as generative adversarial networks (GANs) and Siamese networks using custom training loops, shared weights, and automatic differentiation. Apps and plots help you visualize activations, edit and analyze network architectures, and monitor training progress.

You can exchange models with TensorFlow™ and PyTorch through the ONNX™ format and import models from TensorFlow-Keras and Caffe. The toolbox supports transfer learning with a library of pretrained models (including NASNet, SqueezeNet, Inception-v3, and ResNet-101).

You can speed up training on a single- or multiple-GPU workstation (with Parallel Computing Toolbox™), or scale up to clusters and clouds, including NVIDIA® GPU Cloud and Amazon EC2® GPU instances (with MATLAB Parallel Server™).

Deploy your network onto platforms such as Intel® CPUs or their Arm-Mali® GPUs, NVIDIA GPUs, and ARM® processors using coder products to auto generate code.

No comments